Example Project

Photo by rawpixel on Unsplash

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis posuere tellus ac convallis placerat. Proin tincidunt magna sed ex sollicitudin condimentum. Sed ac faucibus dolor, scelerisque sollicitudin nisi. Cras purus urna, suscipit quis sapien eu, pulvinar tempor diam. Quisque risus orci, mollis id ante sit amet, gravida egestas nisl. Sed ac tempus magna. Proin in dui enim. Donec condimentum, sem id dapibus fringilla, tellus enim condimentum arcu, nec volutpat est felis vel metus. Vestibulum sit amet erat at nulla eleifend gravida.

Nullam vel molestie justo. Curabitur vitae efficitur leo. In hac habitasse platea dictumst. Sed pulvinar mauris dui, eget varius purus congue ac. Nulla euismod, lorem vel elementum dapibus, nunc justo porta mi, sed tempus est est vel tellus. Nam et enim eleifend, laoreet sem sit amet, elementum sem. Morbi ut leo congue, maximus velit ut, finibus arcu. In et libero cursus, rutrum risus non, molestie leo. Nullam congue quam et volutpat malesuada. Sed risus tortor, pulvinar et dictum nec, sodales non mi. Phasellus lacinia commodo laoreet. Nam mollis, erat in feugiat consectetur, purus eros egestas tellus, in auctor urna odio at nibh. Mauris imperdiet nisi ac magna convallis, at rhoncus ligula cursus.

Cras aliquam rhoncus ipsum, in hendrerit nunc mattis vitae. Duis vitae efficitur metus, ac tempus leo. Cras nec fringilla lacus. Quisque sit amet risus at ipsum pharetra commodo. Sed aliquam mauris at consequat eleifend. Praesent porta, augue sed viverra bibendum, neque ante euismod ante, in vehicula justo lorem ac eros. Suspendisse augue libero, venenatis eget tincidunt ut, malesuada at lorem. Donec vitae bibendum arcu. Aenean maximus nulla non pretium iaculis. Quisque imperdiet, nulla in pulvinar aliquet, velit quam ultrices quam, sit amet fringilla leo sem vel nunc. Mauris in lacinia lacus.

Suspendisse a tincidunt lacus. Curabitur at urna sagittis, dictum ante sit amet, euismod magna. Sed rutrum massa id tortor commodo, vitae elementum turpis tempus. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aenean purus turpis, venenatis a ullamcorper nec, tincidunt et massa. Integer posuere quam rutrum arcu vehicula imperdiet. Mauris ullamcorper quam vitae purus congue, quis euismod magna eleifend. Vestibulum semper vel augue eget tincidunt. Fusce eget justo sodales, dapibus odio eu, ultrices lorem. Duis condimentum lorem id eros commodo, in facilisis mauris scelerisque. Morbi sed auctor leo. Nullam volutpat a lacus quis pharetra. Nulla congue rutrum magna a ornare.

Aliquam in turpis accumsan, malesuada nibh ut, hendrerit justo. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Quisque sed erat nec justo posuere suscipit. Donec ut efficitur arcu, in malesuada neque. Nunc dignissim nisl massa, id vulputate nunc pretium nec. Quisque eget urna in risus suscipit ultricies. Pellentesque odio odio, tincidunt in eleifend sed, posuere a diam. Nam gravida nisl convallis semper elementum. Morbi vitae felis faucibus, vulputate orci placerat, aliquet nisi. Aliquam erat volutpat. Maecenas sagittis pulvinar purus, sed porta quam laoreet at.

Qifan Zhang
Qifan Zhang
Senior Staff Researcher

Dr. Qifan Zhang (张起帆) is now a Senior Staff Researcher of Palo Alto Networks. His research focuses on safeguarding critical internet infrastructure and addressing emerging threats in networked systems. His work centers on Network Security, with deep expertise in the Domain Name System (DNS)—the backbone of internet communication. By combining protocol analysis, fuzzing techniques, and formal methods, he designs automated tools to uncover high-risk vulnerabilities in DNS implementations and standards.

One of his flagship projects, ResolverFuzz, is a novel testing framework that exposed critical flaws in widely deployed DNS resolvers, including protocol-level security gaps (e.g., cache poisoning) and implementation errors (e.g., memory corruption). These discoveries have directly strengthened cybersecurity practices for the industry, open-source communities, and public infrastructure providers, earning recognition from organizations like CERT/CC and CVE.

Beyond DNS, he also explores the intersection of AI and Security, investigating risks in real-world machine learning deployments. My research, published in ACSAC 2022, demonstrated the first practical model extraction attacks against autonomous vehicle (AV) systems, using gradient-descent-based methods to reverse-engineer proprietary AI models. This work underscores the urgent need for robust defenses in safety-critical AI applications.

Prior to Palo Alto Networks, he earned his Ph.D. in Computer Engineering from University of California, Irvine advised by Prof. Zhou Li in 2025, and B.Eng. in Computer Science and Technology from ShanghaiTech University in 2020, complemented by a summer session at the University of California, Berkeley in 2017.

Pronunciation of his name: Chee-Fan Jang.
His Curriculum Vitae (last updated on March 14, 2025)