
ResolverFuzz: Automated Discovery of
DNS Resolver Vulnerabilities with

Query-Response Fuzzing
Qifan Zhang, Xuesong Bai, Xiang Li, Haixin Duan, Qi Li and Zhou Li

Domain Name System
What is the IP address of the domain uci.edu?

It’s 44.237.37.40!

2

Under the Hood

Client

(Stub Resolver)

Root NS

8. a.b.c.d

TLD NS

SLD NS
(Auth NS)

request
response 2

3
4

5
6

7

NS: Name Server

DNS Infrastructure
.?

.com?

foo.com?

1. foo.com?

Recursive  
Resolver

3

DNS Failures & Attacks Happened a Lot

4

5

Previous Works
• Existing Attacks

– SADDNS [CCS’21&20], Kashpureff Attack [1997]

– Lack of automated, large-scale vulnerability analysis

• Automated vulnerability analysis

– Formal Analysis: Liu and Duan et al. [SIGCOMM’23], SCALE [NDSI’22], GRoot [SIGCOMM’20]

– Fuzzing: dns-fuzz-server (GitHub repo), DNS fuzzer (GitHub repo) and SnapFuzz [ISSTA’22]

– Focus mostly on Auth NS, no recursive resolver

– Lack of analysis on real-world DNS resolver implementations

– Not specially tailored to DNS resolvers

6

No one has ever done
effective automated analysis on

DNS resolvers before!

Fuzzing: Automated (Fuzz) Testing

Run ProgramInput Crash

Slides credit: Mathias Payer

• Coverage-based grey-box fuzzing, e.g., AFL

8

What are the challenges to
fuzz DNS ?

9

Challenge 1: Non-crash Bugs

Run ProgramInput Crash DNS Bugs:

+ Cache poisoning

+ Denial-of-service

+ Access violation

Not always crash!

10

Which part is more vulnerable?
Where should we focus on?

Check vulnerabilities which have been identified
Focus on where they were most spotted

11

DNS CVEs
• Manual analysis of 423 DNS CVEs from 1999-2023

– 291 CVEs about 6 DNS software

– 245 CVEs about DNS resolvers

– 109 CVEs don’t trigger any crash!

– 93 crash CVEs are non-memory (e.g., assertion failures)

12

Challenge 2: Stateful Fuzzing

Run ProgramInput Crash

Standard fuzzing:

+ Stateless (1 input per round)

DNS:

+ Stateful at resolver

+ Multi-party (client, resolver, name server)

13

Stateless Fuzzing v.s. Stateful Resolver

Client

(Stub Resolver)

Root NS

TLD NS

SLD NS

request
response

NS: Name Server

.?

.com?

foo.com?Recursive  
Resolver

Response without query
CVE-2021-25220:

+ Bogus NS response

+ Cache poisoning

Query without response

CVE-2022-3924:

+ Many recursive queries

+ Stale option enabled

+ Race condition & crash

14

Challenge 3: Multilingual System

Run ProgramInput Crash

DNS Implementations

+ C, C++, C#, Go

+ Multilingual System

15

How should we design
ResolverFuzz?

Black-box, Stateful and Grammar-based fuzzing
Two input generators

Identify different vulnerabilities by different oracles

16

ResolverFuzz Workflow

17

Challenge 1 Challenge 2

Challenge 3

• PCFG (Probabilistic
Context-Free Grammar)
+ byte mutation

18

• Query-response
fuzzing input

• Differential testing  
(cache poisoning)

Header
QNAME
QTYPE …

Header
QNAME
QTYPE …

RDATA…

Query x 1 Response x 1

DNS Software
cache records

Bisecting K-means

ResolverFuzz: Techniques

How does ResolverFuzz perform?

Tested in 4 popular modes
Good coverage of different field values

Efficient runtime performance

23 vulnerabilities identified
19 confirmed, 15 CVEs assigned

Categorized into 3 classes

19

Configuration Settings
• Tested in 4 popular modes

20

Test Generation Analysis
• Rule probabilities of PCFG

– Test certain code logic more intensively

• Good coverage of field values

• Test cases prone to trigger errors

– Potentially bugs

– Only 17.8% have RCODE=NOERROR

21

Runtime Performance
• Use concurrency to speed up

– 5.9 QPS (CDNS w/ f.b.)

– BIND and Unbound only

– 2.8 QPS (other modes)

– MaraDNS, PowerDNS: low on efficiency

• Similar speed with real-world
DNS resolution

– Google DNS: 300-400 ms per query [1]

– i.e., 2.5-3.3 QPS

22[1] https://developers.google.com/speed/public-dns/docs/performance

https://developers.google.com/speed/public-dns/docs/performance

Discovered Vulnerabilities
• 23 bugs discovered

– Cache poisoning, resource consumption, crash

– 15 CVEs assigned

– Outperform dns-fuzz-server, DNS fuzzer and SnapFuzz

23

MaginotDNS Phoenix Domain TuDoor

24

Conclusion
• Conducted a comprehensive study on DNS CVEs

• Proposed ResolverFuzz, a fuzz system tailored to DNS resolvers

– Constrained stateful fuzzing, differential testing, grammar-based fuzzing

• Identified 23 vulnerabilities, 19 confirmed, 15 CVEs assigned

– 3 top-tier conferences published with extended study on 3 discovered vulnerabilities

• Limitations:

– Only test a subset of DNS; Not fully automated; Fixed testing timeouts;  

Lack of long sequence testing; Survivorship bias on CVE study

25

Thanks for listening!
Any questions?
Qifan Zhang, EECS, UC Irvine

qifan.zhang@uci.edu

Qifan’s HomepageResolverFuzz GitHub repo

mailto:qifan.zhang@uci.edu

