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Domain Name System
What is the IP address of the domain uci.edu?

It’s 44.237.37.40!
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DNS Failures & Attacks Happened a Lot 
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Previous Works
• Existing Attacks

– SADDNS [CCS’21&20], Kashpureff Attack [1997]


– Lack of automated, large-scale vulnerability analysis


• Automated vulnerability analysis 

– Formal Analysis: Liu and Duan et al. [SIGCOMM’23], SCALE [NDSI’22], GRoot [SIGCOMM’20]


– Fuzzing: dns-fuzz-server (GitHub repo), DNS fuzzer (GitHub repo) and SnapFuzz [ISSTA’22] 


– Focus mostly on Auth NS, no recursive resolver


– Lack of analysis on real-world DNS resolver implementations


– Not specially tailored to DNS resolvers
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No one has ever done  
effective automated analysis on  

DNS resolvers before! 



Fuzzing: Automated (Fuzz) Testing

Run ProgramInput Crash

Slides credit: Mathias Payer

• Coverage-based grey-box fuzzing, e.g., AFL
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What are the challenges to 
fuzz DNS ?
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Challenge 1: Non-crash Bugs

Run ProgramInput Crash DNS Bugs:

+ Cache poisoning

+ Denial-of-service

+ Access violation

Not always crash!
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Which part is more vulnerable? 
Where should we focus on?

Check vulnerabilities which have been identified 
Focus on where they were most spotted
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DNS CVEs
• Manual analysis of 423 DNS CVEs from 1999-2023

– 291 CVEs about 6 DNS software

– 245 CVEs about DNS resolvers

– 109 CVEs don’t trigger any crash!

– 93 crash CVEs are non-memory (e.g., assertion failures)
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Challenge 2: Stateful Fuzzing

Run ProgramInput Crash

Standard fuzzing:

+ Stateless (1 input per round)

DNS:

+ Stateful at resolver

+ Multi-party (client, resolver, name server)
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Stateless Fuzzing v.s. Stateful Resolver
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Response without query
CVE-2021-25220:


+ Bogus NS response

+ Cache poisoning

Query without response

CVE-2022-3924:

+ Many recursive queries

+ Stale option enabled

+ Race condition & crash
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Challenge 3: Multilingual System

Run ProgramInput Crash

DNS Implementations

+ C, C++, C#, Go

+ Multilingual System
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How should we design 
ResolverFuzz?

Black-box, Stateful and Grammar-based fuzzing 
Two input generators 

Identify different vulnerabilities by different oracles
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ResolverFuzz Workflow
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• PCFG (Probabilistic 
Context-Free Grammar) 
+ byte mutation
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• Query-response 
fuzzing input

• Differential testing  
(cache poisoning)

Header 
QNAME 
QTYPE …

Header 
QNAME 
QTYPE …

RDATA…

Query x 1 Response x 1

DNS Software 
cache records

Bisecting K-means

ResolverFuzz: Techniques



How does ResolverFuzz perform? 

Tested in 4 popular modes 
Good coverage of different field values 

Efficient runtime performance 

23 vulnerabilities identified 
19 confirmed, 15 CVEs assigned 

Categorized into 3 classes
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Configuration Settings
• Tested in 4 popular modes
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Test Generation Analysis
• Rule probabilities of PCFG

– Test certain code logic more intensively


• Good coverage of field values


• Test cases prone to trigger errors

– Potentially bugs


– Only 17.8% have RCODE=NOERROR

21



Runtime Performance
• Use concurrency to speed up

– 5.9 QPS (CDNS w/ f.b.)


– BIND and Unbound only


– 2.8 QPS (other modes)


– MaraDNS, PowerDNS: low on efficiency


• Similar speed with real-world 
DNS resolution


– Google DNS: 300-400 ms per query [1]


– i.e., 2.5-3.3 QPS

22[1] https://developers.google.com/speed/public-dns/docs/performance

https://developers.google.com/speed/public-dns/docs/performance


Discovered Vulnerabilities
• 23 bugs discovered

– Cache poisoning, resource consumption, crash


– 15 CVEs assigned


– Outperform dns-fuzz-server, DNS fuzzer and SnapFuzz
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MaginotDNS Phoenix Domain TuDoor
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Conclusion
• Conducted a comprehensive study on DNS CVEs

• Proposed ResolverFuzz, a fuzz system tailored to DNS resolvers

– Constrained stateful fuzzing, differential testing, grammar-based fuzzing 


• Identified 23 vulnerabilities, 19 confirmed, 15 CVEs assigned 

– 3 top-tier conferences published with extended study on 3 discovered vulnerabilities


• Limitations:

– Only test a subset of DNS; Not fully automated; Fixed testing timeouts;  

Lack of long sequence testing; Survivorship bias on CVE study
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Thanks for listening! 
Any questions?
Qifan Zhang, EECS, UC Irvine 

qifan.zhang@uci.edu

Qifan’s HomepageResolverFuzz GitHub repo

mailto:qifan.zhang@uci.edu

