
ResolverFuzz: Automated Discovery of 
DNS Resolver Vulnerabilities with 

Query-Response Fuzzing
Qifan Zhang, Xuesong Bai, Xiang Li, Haixin Duan, Qi Li and Zhou Li

Accepted by USENIX Security 2024

Feel free to visit my homepage (qifanz.com) for slides
Oct 23, 2023

1



2

Ø4th-year Ph.D. student of Department of EECS

ØAdvisor: Prof. Dr. Zhou Li

ØField of Research:

ØDomain Name System (DNS)

Ø [Security’24] Zhang, Q., Bai, X., Li, X., Duan, H., Li, Q. and Li, Z., ResolverFuzz: Automated 

Discovery of DNS Resolver Vulnerabilities with Query-Response Fuzzing.

Ø [NDSS’23] Li, X., Liu, B., Bai, X., Zhang, M., Zhang, Q., Li, Z., Duan, H. and Li, Q., Ghost 
Domain Reloaded: Vulnerable Links in Domain Name Delegation and Revocation.

Ø [Security’23] Li, X., Lu, C., Liu, B., Zhang, Q., Li, Z., Duan, H. and Li, Q., The Maginot Line: 
Attacking the Boundary of DNS Caching Protection.

Ø [IEEE Access’22] Liao, X., Xu, J., Zhang, Q. and Li, Z., A Comprehensive Study of DNS 
Operational Issues by Mining DNS Forums.

Short Bio



3

Ø4th-year Ph.D. student of Department of EECS

ØAdvisor: Prof. Dr. Zhou Li

ØField of Research:

ØMachine Learning and Security

Ø [ACSAC’22] Zhang, Q., Shen, J., Tan, M., Zhou, Z., Li, Z., Chen, Q.A. and Zhang, H., Play the 

Imitation Game: Model Extraction Attack against Autonomous Driving Localization.

Ø [Under review in ICLR’24] Han, S., Buyukates, B., Hu, Z., Jin, H., Jin, W., Sun, L., Wang, X., 

Xie, C., Zhang, K., Zhang, Q. and Zhang, Y., 2023. FedMLSecurity: A Benchmark for 

Attacks and Defenses in Federated Learning and Federated LLMs.

Ø [Under review in ICLR’24] Han, S., Wu, W., Buyukates, B., Jin, W., Yao, Y., Zhang, Q., 

Avestimehr, S. and He, C., 2023. Kick Bad Guys Out! Zero-Knowledge-Proof-Based 
Anomaly Detection in Federated Learning.

Short Bio



4

ØDomain Name System (DNS)

ØEntry point of many Internet activities

Ø Interpret domain names into network addresses (IPs)

ØE.g., translate uci.edu into 128.200.151.40

ØSecurity guarantee of multiple application services

ØDomain names are widely registered

ØFundamental for other apps

ØWeb, CDN, Email, Certificate Authentication, etc. 

Domain Name System



5

ØRecursive/Iterative process

ØMultiple roles

ØForwarder, recursive resolver, authoritative server

DNS Resolution



6

ØCache Mechanism

ØCache DNS recourse records (RRs) for future references

ØOne of the most vulnerable parts in DNS

ØCache poisoning, e.g., MaginotDNS [Security’23], SAD DNS [CCS’20&21]

ØDomain delegation (Ghost Domain), e.g., Phoenix Domain [NDSS’23]

ØOnly involved for recursive resolvers

ØFocus on recursive resolvers

DNS Resolution



7

ØHow to find vulnerabilities automatically?

ØFormal analysis

ØAlready applied to nameservers: SCALE [SIGCOMM’22], G-Root [NSDI’20]

ØLack rigorous specifications as references for vulnerability detection

ØFuzzing

DNS Vulnerability Detection



8

ØSuitable for testing large-size software in large scale

ØFlexible for multiple scenarios

ØLexical-based: Blackbox/Graybox/Whitebox fuzzing

ØSyntactic-based: (Probalistic) Grammar-based fuzzing 

ØSemantic-based: Concolic/Symbolic fuzzing

Fuzzing



9

ØPrevious works

ØAFL++/AFLNet

ØSnapFuzz [ISSTA’22], DNS Fuzzer (a github repo)

ØFocus on memory vulnerabilities

ØCould only detect crashes

ØBut cache poisoning is semantic vulnerabilities

ØTraditional memory-based fuzzers does not work

ØNeed to design a fuzzer to detect semantic bugs in DNS

Fuzzing on DNS



10

Which part is more vulnerable?
Where should we focus on?

Check vulnerabilities which have been identified
Focus on where they were most spotted



11

ØUnderstand the distribution and root causes of DNS-

related vulnerabilities

Comprehensive Study of CVEs



12

ØFindings:

ØMost of the CVEs are about resolvers

Ø284 CVEs, only 45 related to nameservers

Comprehensive Study of CVEs



13

ØFindings:

ØDiversified CVEs among DNS software

ØBIND has the most CVEs

ØOnly 13 out of 239 CVEs affect all software

Comprehensive Study of CVEs



14

ØFindings:

ØMost of the CVEs are semantic bugs

ØCache poisoning, resource consumption and service crash

Comprehensive Study of CVEs



15

ØFindings:

ØNearly every field of a DNS message has related CVEs

ØQuery name, query type, query flag, RCODE, RDATA, TTL, etc.

ØMost of the CVEs are triggered with short message sequence

Comprehensive Study of CVEs



16

How should we design ResolverFuzz?

Black box, Stateful and Grammar-based fuzzing
Two input generators

Identify diff. vuln. by adapting diff. oracles



17

ØInput:

ØQuery Generator

ØResponse Generator

ResolverFuzz Infrastructure



18

ØOutput:

ØResponse

ØCache

ØSystem logs

ResolverFuzz Infrastructure



19

ØOracle:

ØMeasure divergence

ØBug/vuln. analysis

ResolverFuzz Infrastructure



20

ØInitialize DNS Resolvers

ØTest case generation

ØQuery & Responses

ØTest case execution

ØData dump

ØReset for next round

ØDifferential analysis

ResolverFuzz: Workflow



21

What are the challenges for ResolverFuzz?

Efficiency
Mutation

Stateful Fuzzing
Oracle



22

ØSome DNS software are slow

ØE.g., BIND (~0.4s per query) v.s. PowerDNS (>1s per query)

ØEmpty cache for each test

ØPreset timeouts

ØPre- and post-processing

ØNS initialization

ØData collection

ØSolution: Run several test units in parallel

Ø“High efficiency via high throughput”

Efficiency



23

ØCoverage-based fuzzers
ØFail to provide sufficient guidance

ØPoor on deciding which part should be mutated

ØReason: no preliminary knowledge on DNS packets

ØInput dimension
ØOnly one dimension (query or NS response) leads to many invalid tests

Mutation



24

ØTwo dimensions

ØClient-queries 

ØFor attacker clients

ØNameserver (NS)-responses 

ØFor attacker NSes

Input Generation



25

ØGrammar-based Fuzzing

ØProbabilistic context-free 

grammar (PCFG)

ØQueries and Responses

ØHigh prob. for certain fields

ØGuide fuzzing process

Input Generation



26

ØByte-level mutation

ØSome DNS implementations fail to correctly decode strings with 

special characters embedded

ØE.g., \., \000, @, /, and \

ØJeitner et al. [Security’21]

ØAddition, deletion, and replacement

ØAfter PCFG test generation

Input Generation



27

ØDNS resolvers are stateful
ØDepending on cache records, configurations, etc.

ØMajor challenge for network fuzzing
ØLarge search space of input sequences

ØSolution:
ØGenerate one pair of the query and (authoritative) response

ØCover most vulnerable cases

ØDeploy the auth. response on the NS side

ØStart to test by sending the query

ØCommunication between DNS resolvers and the NS

ØPreset timeout (5s) is deployed

Stateful Fuzzing



28

ØLack an oracle to detect semantic bugs

ØMemory bugs have their oracle

ØE.g., AddressSanitizer [USENIX ATC’12]

ØDifferential testing

ØUsed for memory bugs, but none for DNS

ØHow to connect inconsistency with vulnerabilities?

ØInconsistencies are common in DNS

ØMany of them do not indicate vulnerabilities

Oracle



29

ØRuns multiple programs, comparing their outputs for 

the same input

ØDetecting rendering regressions in browsers (e.g., R2Z2 [ICSE’22])

ØComparing outputs from different versions

ØEfficient to find divergences

Differential Analysis



30

ØDifferent DNS software

ØObjects of differential analysis

ØThree Oracles

ØCache poisoning oracle

ØSemi-automatic, differential-analysis based

ØRecord the max # different records of one software from the others

ØCluster by Bisecting K-Means

ØManually check each cluster to identify possible vulnerabilities

Oracle



31

ØThree Oracles

ØResource consumption oracle

Ø4 metrics:

Ø # queries

Ø Sizes of responses

Ø Resolution timeout

Ø Frequency of internal operations (e.g., cache search)

ØCompare metrics with the value distribution in normal cases

Oracle



32

ØThree Oracles

ØCrash & Corruption oracle

ØMonitor DNS software processes

ØCheck if the process is running after each test case

Oracle



33

How does ResolverFuzz perform?

Tested in 6 popular DNS software and 4 popular modes
Good coverage of different field values

Efficient runtime performance



34

Ø6 DNS software

ØBIND 9, Unbound, PowerDNS, Knot, Technitium and MaraDNS

ØDocker-based

ØSchedulers and oracles implemented in Python

Evaluation



35

Ø4 configurations:

ØRecur.-only, Fwd-only, CDNS w/ fallback and CDNS w/o fallback

Evaluation



36

ØAnalysis of tests generation

ØGood coverage of different field values

ØRule probabilities of PCFG

ØTest certain code logic more intensively

ØTest cases prone to trigger errors

ØPotentially bugs

ØOnly 17.8% have RCODE=NOERROR

Evaluation



37

ØRuntime performance

ØUse concurrency to speed up

Ø5.9 QPS (CDNS w/ f.b.)

Ø BIND and Unbound only 

Ø2.8 QPS (other modes)

Ø MaraDNS, PowerDNS: low on efficiency

ØSimilar speed with real-world DNS

resolution

ØGoogle DNS: 300-400 ms per query

Ø i.e., 2.5-3.3 QPS

Evaluation



38

How many new vuln. are discovered?

23 vulnerabilities identified
19 confirmed, 15 CVEs assigned

Categorized into 3 classes



39

Ø23 vulnerabilities identified
Ø19 vulnerabilities confirmed

Ø15 CVEs assigned

ØDetails available in the paper

Discovered Vulnerabilities



40

ØBailiwick rule

ØNS should not return RRs out of their controlled zone

ØE.g., RRs from .com server should not contain .org RRs

CP1: Out-of-Bailiwick Cache Poisoning

Header: TXID; QR AA;

Question section:
atkr-fwd.com. A
Answer section:
atkr-fwd.com. A x.x.x.x
Authority section:
com. NS ns.atkr-fwd.com.
Additional section:
ns.atkr-fwd.com. A a.t.k.r



41

ØOut-of-Bailiwick attack
ØFirst found in BIND under CDNS without fallback mode

Ø Also identified in Knot and Technitium

ØForged NS records with AA Flag have higher trust level

ØResolvers may overwrite cached records with the forged one
Ø Some DNS resolver do not check the response

ØHijack the whole .com zone into ns.atkr-fwd.com

ØDetails analyzed in MaginotDNS [Security’23]

CP1: Out-of-Bailiwick Cache Poisoning

Header: TXID; QR AA;

Question section:
atkr-fwd.com. A
Answer section:
atkr-fwd.com. A x.x.x.x
Authority section:
com. NS ns.atkr-fwd.com.
Additional section:
ns.atkr-fwd.com. A a.t.k.r

Resolver-
response !

Client-
query "

Attacker

Client

Recursive resolver
with(out) the forwarding mode

Global
cache

Upstream
server

Name-
server

Forwarding
zone #!

Recursive
zone #"

Match

Resolver-
query "#

Auth-response !!

Resolver-
query "$

Auth-response !"

!%&&%'(



42

ØForward-only mode, PowerDNS

ØLooks up its local cache for trust anchors and NS 

records before sending it to a server

ØE.g., s.atkr-fwd.com

ØShould be only one search only

ØPowerDNS: search records in the order of s.atkr-fwd.com, atkr-

fwd.com, .com and root servers

ØUntil an NS record is found

ØMay cause resource consumption due to excessive cache search

RC1: Excessive cache search operations



43

ØComprehensive study of published DNS CVEs

ØDevelop a blackbox fuzzing system for DNS resolvers

ØNovel techniques

ØStateful fuzzing

ØDifferential testing

ØGrammar-based fuzzing

Ø12 types of vulnerabilities and 15 CVEs assigned

Conclusion



Thanks for listening!
Any questions?

44

Qifan Zhang, Department of EECS, UC Irvine
qifan.zhang@uci.edu



45

ØCache poisoning (CP)

ØCP1: Out-of-bailiwick cache poisoning

ØCP2: In-bailiwick cache poisoning

ØCP3: Fragmentation-based cache poisoning

ØCP4: Iterative subdomain caching

Discovered Vulnerabilities



46

ØResource Consumption Bugs (RC)

ØRC1: Excessive cache search operations

ØRC2: Unlimited cache store operations

ØRC3: Ignoring the RD flag

ØRC4: Following a self-CNAME reference

ØRC5: Large responses to clients

ØRC6: Overlong waiting time over UDP

ØRC7: Excessive queries for resolution over TCP

Discovered Vulnerabilities



47

ØCrash & Corruption Bugs

ØAssertion failure when receiving queries

Discovered Vulnerabilities


