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ØDomain Name System (DNS)

ØEntry point of many Internet activities

Ø Interpret domain names into network addresses (IPs)

ØE.g., translate uci.edu into 128.200.151.40

ØSecurity guarantee of multiple application services

ØDomain names are widely registered

ØFundamental for other apps

ØWeb, CDN, Email, Certificate Authentication, etc. 

Domain Name System
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ØRecursive/Iterative process

ØMultiple roles

ØForwarder, recursive resolver, authoritative server

DNS Resolution
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ØCache Mechanism

ØCache DNS recourse records (RRs) for future references

ØOne of the most vulnerable parts in DNS

ØCache poisoning, e.g., MaginotDNS [Security’23], SAD DNS [CCS’20&21]

ØDomain delegation (Ghost Domain), e.g., Phoenix Domain [NDSS’23]

ØOnly involved for recursive resolvers

ØFocus on recursive resolvers

DNS Resolution



7

ØHow to find vulnerabilities automatically?

ØFormal analysis

ØAlready applied to nameservers: SCALE [SIGCOMM’22], G-Root [NSDI’20]

ØLack rigorous specifications as references for vulnerability detection

ØFuzzing

DNS Vulnerability Detection
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ØSuitable for testing large-size software in large scale

ØFlexible for multiple scenarios

ØLexical-based: Blackbox/Graybox/Whitebox fuzzing

ØSyntactic-based: (Probalistic) Grammar-based fuzzing 

ØSemantic-based: Concolic/Symbolic fuzzing

Fuzzing
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ØPrevious works

ØAFL++/AFLNet

ØSnapFuzz [ISSTA’22], DNS Fuzzer (a github repo)

ØFocus on memory vulnerabilities

ØCould only detect crashes

ØBut cache poisoning is semantic vulnerabilities

ØTraditional memory-based fuzzers does not work

ØNeed to design a fuzzer to detect semantic bugs in DNS

Fuzzing on DNS
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Which part is more vulnerable?
Where should we focus on?

Check vulnerabilities which have been identified
Focus on where they were most spotted
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ØUnderstand the distribution and root causes of DNS-

related vulnerabilities

Comprehensive Study of CVEs
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ØFindings:

ØMost of the CVEs are about resolvers

Ø284 CVEs, only 45 related to nameservers

Comprehensive Study of CVEs
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ØFindings:

ØDiversified CVEs among DNS software

ØBIND has the most CVEs

ØOnly 13 out of 239 CVEs affect all software

Comprehensive Study of CVEs



14

ØFindings:

ØMost of the CVEs are semantic bugs

ØCache poisoning, resource consumption and service crash

Comprehensive Study of CVEs
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ØFindings:

ØNearly every field of a DNS message has related CVEs

ØQuery name, query type, query flag, RCODE, RDATA, TTL, etc.

ØMost of the CVEs are triggered with short message sequence

Comprehensive Study of CVEs
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How should we design ResolverFuzz?

Black box, Stateful and Grammar-based fuzzing
Two input generators

Identify diff. vuln. by adapting diff. oracles
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ØInput:

ØQuery Generator

ØResponse Generator

ResolverFuzz Infrastructure



18

ØOutput:

ØResponse

ØCache

ØSystem logs

ResolverFuzz Infrastructure
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ØOracle:

ØMeasure divergence

ØBug/vuln. analysis

ResolverFuzz Infrastructure
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ØInitialize DNS Resolvers

ØTest case generation

ØQuery & Responses

ØTest case execution

ØData dump

ØReset for next round

ØDifferential analysis

ResolverFuzz: Workflow
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What are the challenges for ResolverFuzz?

Efficiency
Mutation

Stateful Fuzzing
Oracle
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ØSome DNS software are slow

ØE.g., BIND (~0.4s per query) v.s. PowerDNS (>1s per query)

ØEmpty cache for each test

ØPreset timeouts

ØPre- and post-processing

ØNS initialization

ØData collection

ØSolution: Run several test units in parallel

Ø“High efficiency via high throughput”

Efficiency
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ØCoverage-based fuzzers
ØFail to provide sufficient guidance

ØPoor on deciding which part should be mutated

ØReason: no preliminary knowledge on DNS packets

ØInput dimension
ØOnly one dimension (query or NS response) leads to many invalid tests

Mutation
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ØTwo dimensions

ØClient-queries 

ØFor attacker clients

ØNameserver (NS)-responses 

ØFor attacker NSes

Input Generation
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ØGrammar-based Fuzzing

ØProbabilistic context-free 

grammar (PCFG)

ØQueries and Responses

ØHigh prob. for certain fields

ØGuide fuzzing process

Input Generation
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ØByte-level mutation

ØSome DNS implementations fail to correctly decode strings with 

special characters embedded

ØE.g., \., \000, @, /, and \

ØJeitner et al. [Security’21]

ØAddition, deletion, and replacement

ØAfter PCFG test generation

Input Generation
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ØDNS resolvers are stateful
ØDepending on cache records, configurations, etc.

ØMajor challenge for network fuzzing
ØLarge search space of input sequences

ØSolution:
ØGenerate one pair of the query and (authoritative) response

ØCover most vulnerable cases

ØDeploy the auth. response on the NS side

ØStart to test by sending the query

ØCommunication between DNS resolvers and the NS

ØPreset timeout (5s) is deployed

Stateful Fuzzing
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ØLack an oracle to detect semantic bugs

ØMemory bugs have their oracle

ØE.g., AddressSanitizer [USENIX ATC’12]

ØDifferential testing

ØUsed for memory bugs, but none for DNS

ØHow to connect inconsistency with vulnerabilities?

ØInconsistencies are common in DNS

ØMany of them do not indicate vulnerabilities

Oracle
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ØRuns multiple programs, comparing their outputs for 

the same input

ØDetecting rendering regressions in browsers (e.g., R2Z2 [ICSE’22])

ØComparing outputs from different versions

ØEfficient to find divergences

Differential Analysis
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ØDifferent DNS software

ØObjects of differential analysis

ØThree Oracles

ØCache poisoning oracle

ØSemi-automatic, differential-analysis based

ØRecord the max # different records of one software from the others

ØCluster by Bisecting K-Means

ØManually check each cluster to identify possible vulnerabilities

Oracle
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ØThree Oracles

ØResource consumption oracle

Ø4 metrics:

Ø # queries

Ø Sizes of responses

Ø Resolution timeout

Ø Frequency of internal operations (e.g., cache search)

ØCompare metrics with the value distribution in normal cases

Oracle
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ØThree Oracles

ØCrash & Corruption oracle

ØMonitor DNS software processes

ØCheck if the process is running after each test case

Oracle
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How does ResolverFuzz perform?

Tested in 6 popular DNS software and 4 popular modes
Good coverage of different field values

Efficient runtime performance
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Ø6 DNS software

ØBIND 9, Unbound, PowerDNS, Knot, Technitium and MaraDNS

ØDocker-based

ØSchedulers and oracles implemented in Python

Evaluation
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Ø4 configurations:

ØRecur.-only, Fwd-only, CDNS w/ fallback and CDNS w/o fallback

Evaluation
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ØAnalysis of tests generation

ØGood coverage of different field values

ØRule probabilities of PCFG

ØTest certain code logic more intensively

ØTest cases prone to trigger errors

ØPotentially bugs

ØOnly 17.8% have RCODE=NOERROR

Evaluation
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ØRuntime performance

ØUse concurrency to speed up

Ø5.9 QPS (CDNS w/ f.b.)

Ø BIND and Unbound only 

Ø2.8 QPS (other modes)

Ø MaraDNS, PowerDNS: low on efficiency

ØSimilar speed with real-world DNS

resolution

ØGoogle DNS: 300-400 ms per query

Ø i.e., 2.5-3.3 QPS

Evaluation
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How many new vuln. are discovered?

23 vulnerabilities identified
19 confirmed, 15 CVEs assigned

Categorized into 3 classes
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Ø23 vulnerabilities identified
Ø19 vulnerabilities confirmed

Ø15 CVEs assigned

ØDetails available in the paper

Discovered Vulnerabilities
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ØBailiwick rule

ØNS should not return RRs out of their controlled zone

ØE.g., RRs from .com server should not contain .org RRs

CP1: Out-of-Bailiwick Cache Poisoning

Header: TXID; QR AA;

Question section:
atkr-fwd.com. A
Answer section:
atkr-fwd.com. A x.x.x.x
Authority section:
com. NS ns.atkr-fwd.com.
Additional section:
ns.atkr-fwd.com. A a.t.k.r
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ØOut-of-Bailiwick attack
ØFirst found in BIND under CDNS without fallback mode

Ø Also identified in Knot and Technitium

ØForged NS records with AA Flag have higher trust level

ØResolvers may overwrite cached records with the forged one
Ø Some DNS resolver do not check the response

ØHijack the whole .com zone into ns.atkr-fwd.com

ØDetails analyzed in MaginotDNS [Security’23]

CP1: Out-of-Bailiwick Cache Poisoning

Header: TXID; QR AA;

Question section:
atkr-fwd.com. A
Answer section:
atkr-fwd.com. A x.x.x.x
Authority section:
com. NS ns.atkr-fwd.com.
Additional section:
ns.atkr-fwd.com. A a.t.k.r
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ØForward-only mode, PowerDNS

ØLooks up its local cache for trust anchors and NS 

records before sending it to a server

ØE.g., s.atkr-fwd.com

ØShould be only one search only

ØPowerDNS: search records in the order of s.atkr-fwd.com, atkr-

fwd.com, .com and root servers

ØUntil an NS record is found

ØMay cause resource consumption due to excessive cache search

RC1: Excessive cache search operations
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ØComprehensive study of published DNS CVEs

ØDevelop a blackbox fuzzing system for DNS resolvers

ØNovel techniques

ØStateful fuzzing

ØDifferential testing

ØGrammar-based fuzzing

Ø12 types of vulnerabilities and 15 CVEs assigned

Conclusion



Thanks for listening!
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ØCache poisoning (CP)

ØCP1: Out-of-bailiwick cache poisoning

ØCP2: In-bailiwick cache poisoning

ØCP3: Fragmentation-based cache poisoning

ØCP4: Iterative subdomain caching

Discovered Vulnerabilities
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ØResource Consumption Bugs (RC)

ØRC1: Excessive cache search operations

ØRC2: Unlimited cache store operations

ØRC3: Ignoring the RD flag

ØRC4: Following a self-CNAME reference

ØRC5: Large responses to clients

ØRC6: Overlong waiting time over UDP

ØRC7: Excessive queries for resolution over TCP

Discovered Vulnerabilities
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ØCrash & Corruption Bugs

ØAssertion failure when receiving queries

Discovered Vulnerabilities


